

Addendum

Date: December 11, 2018

To: Eric Peterson, Metro District Signing Engineer

Metro District

From: Daniel Freiburger, Graduate Engineer – Trainee

Geotechnical Engineering Section

Concur: Rich Lamb, Foundations Engineer

Geotechnical Engineering Section

Subject: State Project 8825-682 (Metro District)

Metrowide Overhead Sign Structure Replacement

Foundation Investigation and Recommendations Addendum (Site 9)

1.0 Project Information

State Project 8825-682 will replace a number of overhead sign structures on multiple trunk highways throughout the Twin Cities metro area. A Foundation Investigation and Recommendations (FIR) report was sent on December 3 providing subsurface investigation information and recommendations for 13 of the 14 sites requiring new foundations. The initial CPT investigation at Site 9, TH 94 Eastbound at 33rd / 34th Avenues, met refusal as a shallow depth. For this reason, an additional SPT boring was required, but was not finished at the time of the first report. This addendum provides the findings and recommendations with the information from the now complete additional SPT boring.

2.0 Subsurface Investigation Summary

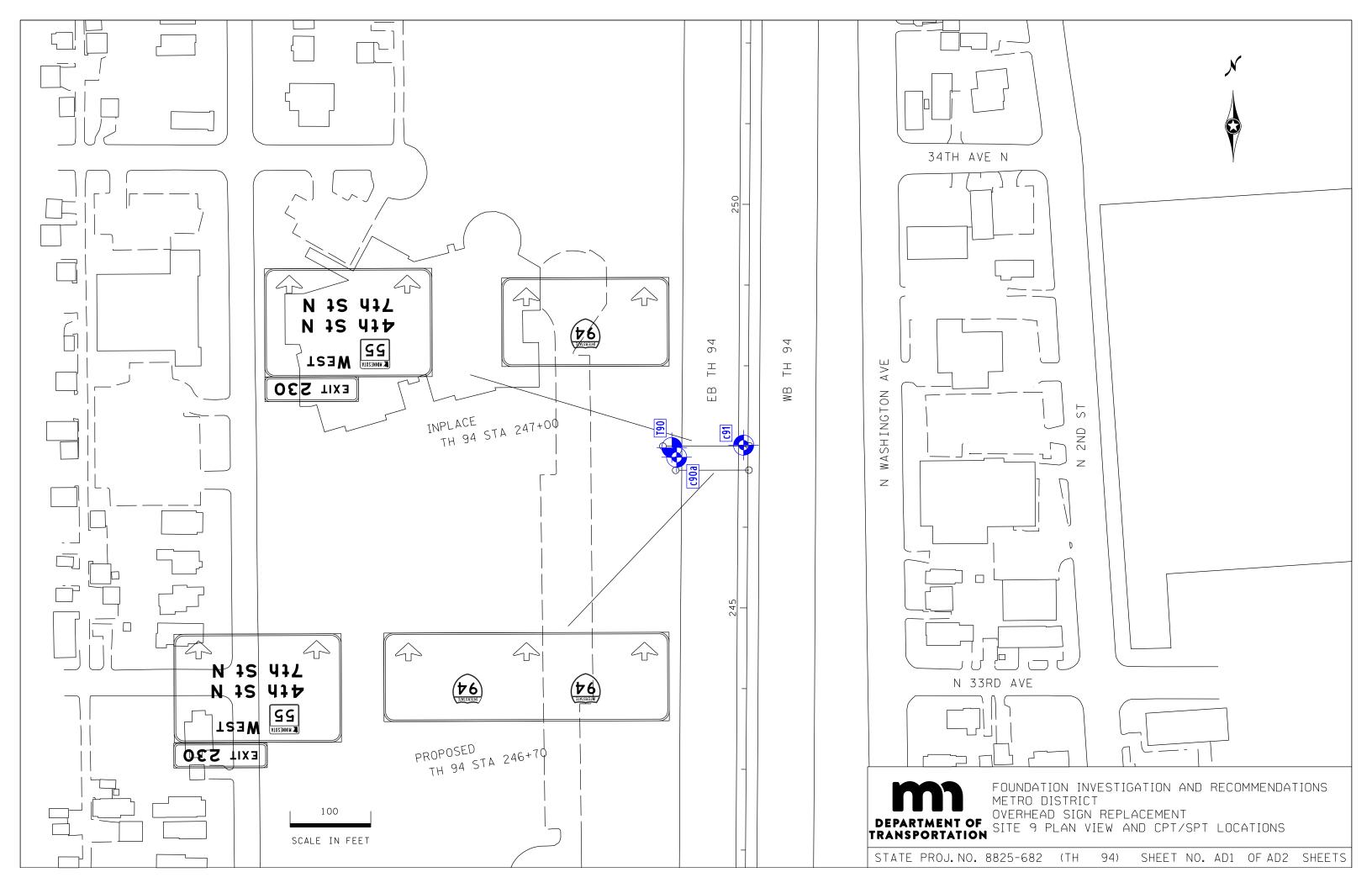
The MnDOT Foundations Unit conducted Cone Penetration Test (CPT) Soundings at the Site 9 proposed sign structure location in October of 2018. The Soundings encountered 9.5' of material that behaved as sand, and then met refusal. To determine the stratigraphy underlying this depth, a Standard Penetration Test (SPT) Boring was made at this site in December of 2018. This boring encountered about 5' of sand and gravel, followed by deep layer of St. Peter sandstone, beginning at an elevation of 839.0. The sandstone had very high SPT N60 values, and was very poorly cemented, very fine to medium grained, and had well rounded and frosted quartz grains. The water table was estimated to be about 35' deep. Full details of the subsurface investigation at this site can be found in the drawings and logs attached to this report.

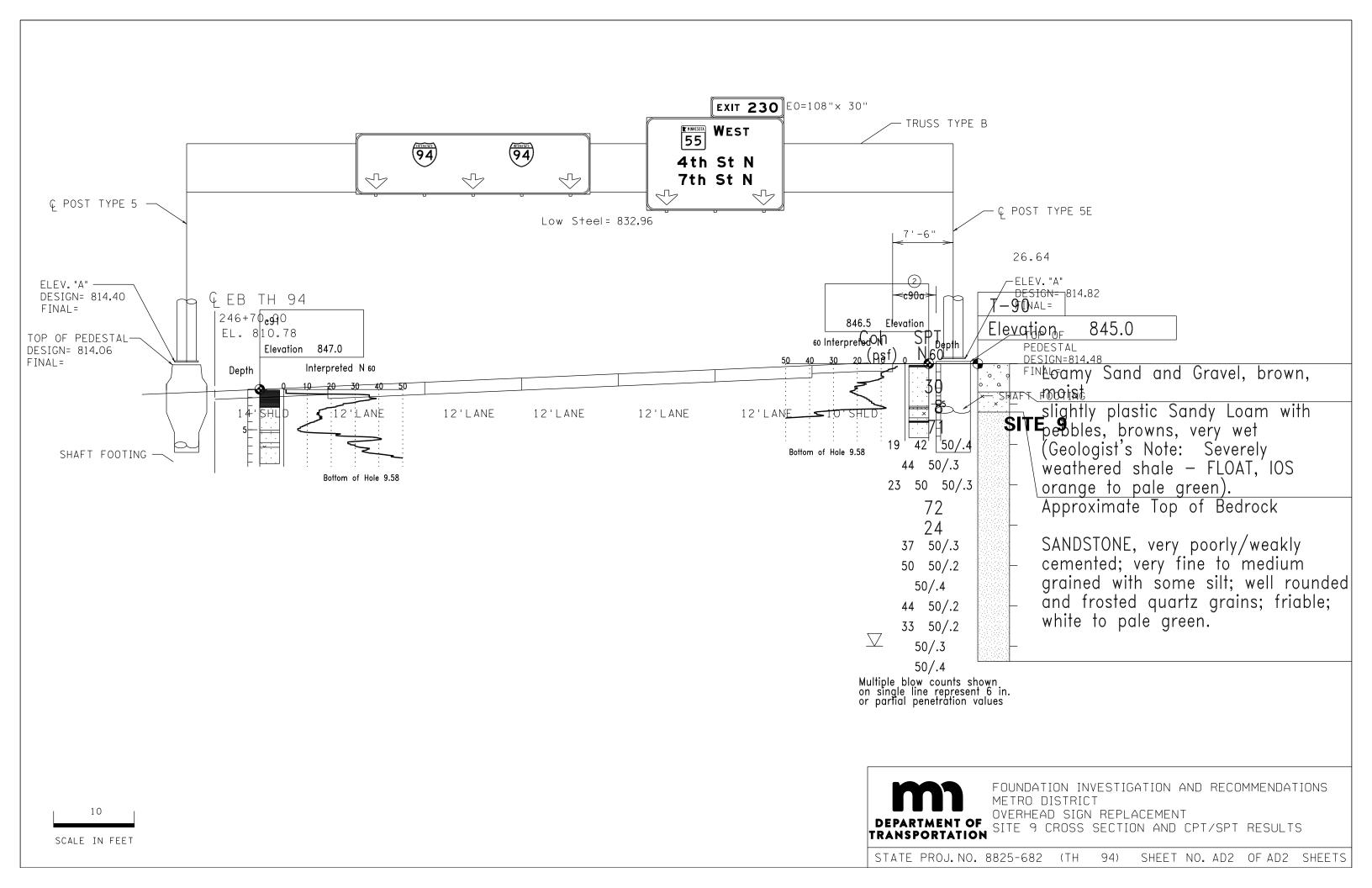
3.0 Foundation Analysis

Section 3 in the initial FIR report provided a detailed description of the standard foundation types that MnDOT uses for overhead signs. At Site 9, due to the presence of shallow bedrock, a modified drilled shaft design is recommended. The standard 4' diameter shaft can be used, but constructing the standard 29' length shaft at this location is an unnecessary undertaking. To determine an appropriate shaft embedment, a lateral pile analysis was conducted using *LPILE* (Ensoft, Inc.). Using service loads provided by the Bridge Office, different

drilled shaft lengths were investigated to minimize top deflection. It was determined that a drilled shaft extending 5' into the bedrock, with the bottom of the shaft around an elevation of 834.0, would provide a satisfactory foundation while limiting the required amount of bedrock excavation. The shaft excavation is not expected to require temporary casing, due to the estimated depth of groundwater being well below the shaft length. However, perched groundwater above the bedrock may require special attention in the field.

4.0 Foundation Recommendations


Based on review of the existing subsurface conditions and proposed construction, it is recommended that:


- The proposed overhead sign structure at Site 9 be supported on modified drilled shaft foundations as detailed in Drawing ST-3 for Standard Overhead Sign Interim Design B and described in Section 3.0 above.
- 2) Subsurface information from this investigation and report be provided to the bidding contractors so that the scope of foundation construction can be clearly understood prior to project letting.
- 3) The Foundations Office be contacted if the soils encountered during construction differ significantly from those described in this report.

5.0 Attachments

Plan View of Site 9 Sign Location and Subsurface Investigation Sites Cross Section of Site 9 Sign Structure and CPT/SPT Findings CPT Index Sheet CPT Logs for Soundings c90a-c91 (Unique No. 83502-83503) SPT Index Sheet SPT Log for Boring T-90 (Unique Number 83616)

CC: Brad Skow, Chief Geotechnical Engineer
Tim Clyne, Metro District Materials Engineer
Michelle Waters, Office of Environmental Stewardship

Minnesota Department of Transportation Geotechnical Section

Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

USER NOTES, ABBREVIATIONS AND DEFINITIONS

This Index sheet accompanies Cone Penetration Test Data. Please refer to the Boring Log Descriptive Terminology Sheet for information relevant to conventional boring logs.

This Cone Penetration Test (CPT) Sounding follows ASTM D 5778 and was made by ordinary and conventional methods and with care deemed adequate for the Department's design purposes. Since this sounding was not taken to gather information relating to the construction of the project, the data noted in the field and recorded may not necessarily be the same as that which a contractor would desire. Department believes that the information as to the conditions and materials reported is accurate, it does not warrant that the information is necessarily complete. This information has been edited or abridged and may not reveal all the information which might be useful or of interest to the contractor. Consequently, the Department will make available at its offices, the field logs relating to this sounding

Since subsurface conditions outside each CPT Sounding are unknown, and soil, rock and water conditions cannot be relied upon to be consistent or uniform, no warrant is made that conditions adjacent to this sounding will necessarily be the same as or similar to those shown on this log. Furthermore, the Department will not be responsible for any interpretations, assumptions, projections or interpolations made by contractors, or other users of this log.

Water pressure measurements and subsequent interpreted water levels shown on this log should be used with discretion since they represent dynamic Dynamic Pore water conditions. measurements may deviate substantially from hydrostatic conditions, especially in cohesive soils. In cohesive soils, water pressures often take extended periods of time to reach equilibrium and thus reflect their true field level. Water levels can be expected to vary both seasonally and yearly. The absence of notations on this log regarding water does not necessarily mean that this boring was dry or that the contractor will not encounter subsurface water during the course of construction.

CPT Terminology

CPT......Cone Penetration Test
CPTU.......Cone Penetration Test with Pore
Pressure measurements

SCPTU.......Cone Penetration Test with Pore Pressure and Seismic measurements

Piezocone...Common name for CPTU test

(Note: This test is \underline{not} related to the Dynamic Cone Penetrometer DCP)

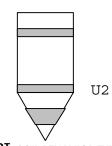
q_T TIP RESISTANCE

The resistance at the cone corrected for water pressure. Data is from cone with 60 degree apex angle and a 10 cm² end area.

fs SLEEVE FRICTION RESISTANCE

The resistance along the sleeve of the penetrometer.

FR Friction Ratio


Ratio of sleeve friction over corrected tip resistance.
FR = fs/qt

Vs Shear Wave Velocity

A measure of the speed at which a siesmic wave travels through soil/rock.

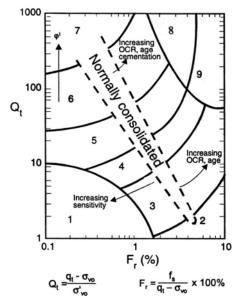
PORE WATER MEASUREMENTS

Pore water measurements reported on CPT Log are representative of water pressures measured at the U2 location, just behind the cone tip, prior to the sleeve, as shown in the figure below. These measurements are considered to be dynamic water pressures due to the local disturbance caused by the cone tip. Dynamic water pressure decay and Static water pressure measurements are reported on a Pore Water Pressure Dissipation Graph.

SBT SOIL BEHAVIOR TYPE

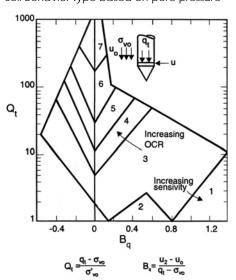
Soil Classification methods for the Cone Penetration Test are based on correlation charts developed from observations of CPT data and conventional borings. Please note that these classification charts are meant to provide a guide to Soil Behavior Type and should not be used to infer a soil classification based on grain size distribution.

The numbers corresponding to different regions on the charts represent the following soil behavior types:


- 1. Sensitive, Fine Grained
- 2. Organic Soils Peats
- 3. Clays Clay to Silty Clay
- 4. Silt Mixtures Clayey Silt to Silty Clay
- 5. Sand Mixtures Silty Sand to Sandy Silt
- 6. Sands Clean Sand to Silty Sand
- 7. Gravelly Sand to Sand
- 8. Very Stiff Sand to Clayey Sand
- 9. Very Stiff, Fine Grained

Note that engineering judgment, and comparison with conventional borings is especially important in the proper interpretation of CPT data in certain geomaterials.

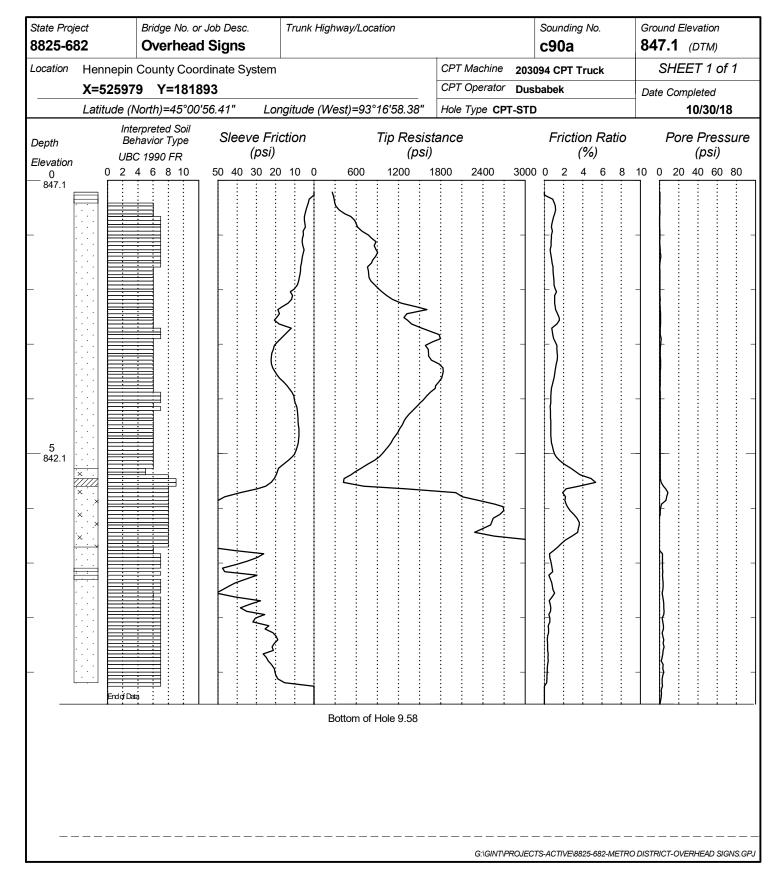
The following charts are used to provide a Soil Behavior Type for the CPT Data.


Robertson CPT 1990

Soil Behavior type based on friction ratio

Robertson CPTU 1990

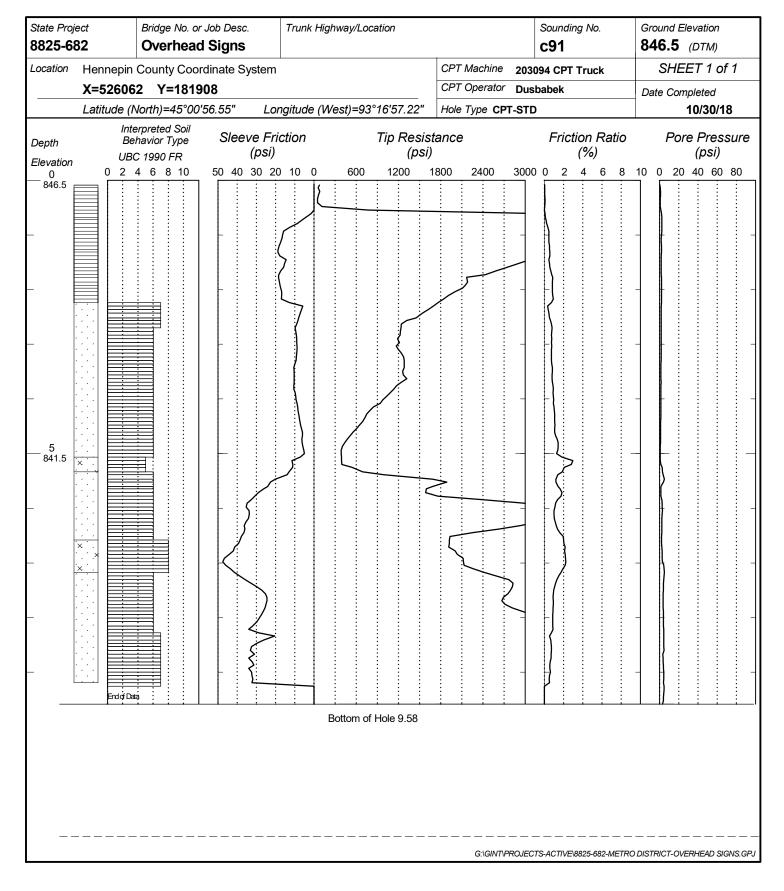
Soil Behavior type based on pore pressure


G:\GEOTECH\PUBLIC\FORMS\CPTINDEX.DOC January 30, 2002

MINNESOTA DEPARTMENT OF TRANSPORTATION - GEOTECHNICAL SECTION

CONE PENETRATION TEST RESULTS

UNIQUE NUMBER 83502



MINNESOTA DEPARTMENT OF TRANSPORTATION - GEOTECHNICAL SECTION

CONE PENETRATION TEST RESULTS

UNIQUE NUMBER 83503

Minnesota Department of Transportation Geotechnical Section

BORING LOG DESCRIPTIVE TERMINOLOGY

USER NOTES, ABBREVIATIONS AND DEFINITIONS - Additional information available in Geotechnical Manual

This boring was made by ordinary and conventional methods and with care deemed adequate for the Department's design purposes. Since this boring was not taken to gather information relating to the construction of the project, the data noted in the field and recorded may not necessarily be the same as that which a contractor would desire. While the Department believes that the information as to the conditions and materials reported is accurate, it does not warrant that the information is necessarily complete. This information has been edited or abridged and may not reveal all the information which might be useful or of interest to the contractor. Consequently, the Department will make available at its offices, the field logs relating to this boring.

Since subsurface conditions outside each borehole are unknown, and soil, rock and water conditions cannot be relied upon to be consistent or uniform, no warrant is made that conditions adjacent to this boring will necessarily be the same as or similar to those shown on this log. Furthermore, the Department will not be responsible for any interpretations, assumptions, projections or interpolations made by contractors, or other users of this log.

Water levels recorded on this log should be used with discretion since the use of drilling fluids in borings may seriously distort the true field conditions. Also, water levels in cohesive soils often take extended periods of time to reach equilibrium and thus reflect their true field level. Water levels can be expected to vary both seasonally and yearly. The absence of notations on this log regarding water does not necessarily mean that this boring was dry or that the contractor will not encounter subsurface water during the course of construction.

WATER MEASUREMENT

AB	After Bailing
AC	After Completion
AF	After Flushing
w/C	with Casing
w∕M	With Mud
WSD	While Sampling/Drilling
w /AUG	

DRILLING C	<u>OPERATIONS</u>
AUG	Augered
CD	Core Drilled
DBD	Disturbed by Drilling
DBJ	Disturbed by Jetting
PD	Plug Drilled
ST	Split Tube (SPT test)
TW	Thinwall (3" Shelby Tube)
WS	Wash Sample
AB	After Bailing
NSR	No Sample Retrieved
WH	Weight of Hammer
	Weight of Rod
Mud	Drilling Fluids in Sample
CS	Continuous Sample

MISCELLANEOUS

NΑ	Not Applicable
w/	with
w⁄o	with out
sat	saturated

SOIL CORE TESTS

SPT N ₆₀ ASTM D1586 Modified
Blows per foot with 140 lb. hammer and a
standard energy of 210 ft-lbs. This energy
represents 60% of the potential energy of the
system and is the average energy provided
by a Rope & Cathead system.
MC Moisture Content
COHCohesion (equivalent to 1/2
Unconfined Compression Strength)
Y Sample Unit Weight
LLLiquid Limit
Pl Plasticity Index
ϕ Angle of Internal Friction
REC Percent Core Recovered
RQD Rock Quality Description
(Percent of total core interval consisting of
unbroken pieces 4 inches or longer)
ACLAverage Core Length
(Average length of core that is greater than
4 inches long)
Core Breaks Number of natural core

breaks per 2 foot interval. DISCONTINUITY SPACING

Fractures	Distance	Bedding
Very Close · · · · ·	<2 inches	Very Thir
Close · · · · · · · ·	2-12 inches	Thin
Mod. Close · · · · ·	12-36 inches	Medium
Wide	> 36 inches	Thick

RELATIVE DENSITY

Compactness - Granular Soils

loose	5–10
medium dense	11–24
dense	25–50
very dense	> 50
Consistency - Cohesive Soils	<u>BPF</u>
very soft	0–1
soft	2–4
£:	- 0

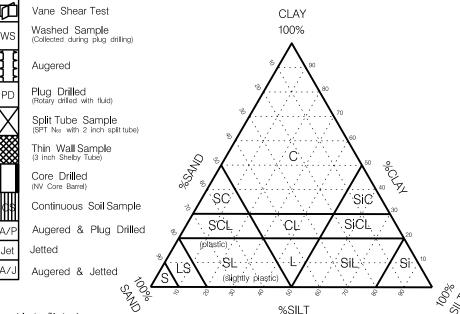
very loose 0-4

very soil	. 0—1
soft	2-4
firm	5–8
stiff	9–15
very stiff	16-30
hard	31–60
very hard	>60

COLOR

blk Black	wht White
brn Brown	yel Ye l low
orng Orange	lt Light
grn Green	dk dark
IOS Iron Oxide Stained	ar Grev

GRAIN SIZE /PLASTICITY


VF Very Fine	pl Plastic
F Fine	slpl Slightly Plastic
Cr Coarse	

SOIL / ROCK TERMS

C Clay	Lmst Limestone
L Loam	Sst Sandstone
S Sand	Dolo Dolostone
Si Silt	wx weathered
G Gravel (No. 10 Sie	ve to 3 in.)
Bldr Boulder (over 3 i	nches dia.)
T till (unsorted nonstr	ratified glacial deposits)

DRILLING SYMBOLS

Mn/DOT Triangular Textural Classification System

Index Sheet No.3.1 September 2016 $\g:\g=0+ech\public\forms\ndex31.dgn\$

MINNESOTA DEPARTMENT OF TRANSPORTATION - GEOTECHNICAL SECTION LABORATORY LOG & TEST RESULTS - SUBSURFACE EXPLORATION

UNIQUE NUMBER 83616

State Project 8825-682			Bridge No. or Job Desc. Overhead Signs Trunk Highway/Location Interstate Highway						Boring No. T-90		Ground Elevation 845.0 (GeoXH (DC))		
Locatio	n Hen	nepir	County Coordinate System			Drill Machine 2113			at Tire		SHEET 1 of 1		
			77 Y=181902		Han	Hammer CME Automatic Calibrated				Drilling Completed	12/5/18		
	Latit	ude (North)=45°00′56.49140 89 2	ng itude (West)=93°16'58.40009	6665"	SPT	МС	СОН	γ	1	Other 7	ests	
DEРТН	Depth	Lithology			g ation	Men	(%)	(psf)	(pcf)	Soil	Or Rem	narks	
DE	Elev.	Lith	C	lassification	- Drilling	REC (%)	RQD (%)	ACL (ft)	Core Breaks	Rock	Forma or Men		
	- - - 3.5	, 0,	Loamy Sand and Gravel, bro	wn, moist		30	5						
5	- 841.5 - - 6.0	× .	slightly plastic Sandy Loam v (Geologist's Note: Severely orange to pale green).	vith pebbles, browns, very wet weathered shale - FLOAT, IOS	11	8	16						
1	839.0			1	71	5				T PETER SAN			
10	-				1	19 42 50/.4	4						
	- - -				11	44 50/.3	3						
15-	- -				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	23 50 50/.3	3						
	- -				X 13	72	2						
20	-		SANDSTONE, very poorly/w	eakly cemented; very fine to silt; well rounded and frosted quartz	X 17	24 .	3						
+	-		grains; friable; white to pale of		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	37 50/.3	1						
25	- - - -				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	50 50/.2	3						
+					No.	50/.4	1						
30						44 50/.2	39						
						33 50/.2	12						
Z ₃₅	-				1	50/.3	16						
Ţ	36.9 808.1		Bottom of Hole -36.9' Water measured at 35.0' wit	h auger		50/.4	17_						
-				- 							 s: JNH Edit: Da	-, <u>-,-</u>	